

University of Papua New Guinea Waigani campus on 17–18 August.

Assessment of surface runoff within the urban region

A case study of Lae City, Papua New Guinea

Presenter: Runitha Nickson (Post Graduate Student)

Supervisor: Dr. Tingneyuc Sekac & Dr. Sujoy Jana

Resilient and diverse development

1. INTRODUCTION

Source: Lockheed, 2020

- Flood hazard is the most frequent occurring disaster that is happening all around the world today.
- 40% of the natural disaster is flood while 60% are other natural disaster (World Flood Statistics, nd).
- Surface Runoff is the most serious contributing Factor to Flood (Vojtek & Vojtekova 2016).

Source: Green Venture

1.1 PROBLEM STATEMENT

• Lae is an industrialized city known for its rainy season which leads to major runoff and clogged in drainage within the city (Gware, 2023).

• Lack of assessment of the pervious and impervious surfaces within the city is seen as a problem.

Source: https://be-eco-friendly.blogspot.com/2010/10/nonpoint-source-pollution.html

1.2 AIM & OBJECTIVES

- > Applying Geospatial techniques to assess and investigate surface run-off mm/day within Lae city Urban zones.
- The main objectives are to assess;
- ☐ The Land use and Landcover
- ☐ The Soil Texture
- ☐ The Curve Number Calculation
- ☐ The daily rainfall in mm/day

Resilient and diverse development

1.3 CASE STUDY SITE

- 100 677 people
- 30 Manufacturing Companies
- PNG's Biggest Ports
- 5 Secondary schools
- 12 Primary & Community School
- 4 colleges and 1 university
- Many business houses
- 20 m/66 feet above sea level

Resilient and diverse development

3. RESULTS

3.1 Rainfall Validation of Ground and Satellite Data

- Correlation Graph showing year ranging from 2003 to 2022
- Nazab weather station and rainfall data downloaded from Center for Hydrometeorology & Remote Sensing (CHRS).
- The rainfall data was very high resolution (0.04° x 0.04°)
- Positive correlation

- CHRS Rainfall Data for 20 Year Period
- The maximum rainfall was recorded in 2022 February **16 to 24.**

Resilient and diverse development

3.2 Soil Texture

Soil Texture	Hydrologic al Soil Group	Area in square meters	Percentage of Land Covered
Sandy Loam	A	778.50	5.19
Silty Clay Loam	D	14, 215.50	94.77
Gravel	A	6	0.04

- > Three main soil texture.
- ➤ They were grouped into two main hydrological soil group.
- Soils in group A have low runoff potential whereas soils in group D have high runoff potential.

Resilient and diverse development

3.3 Landuse Landcover

- Seven main classes were found in the city.
- They were grouped into pervious and impervious surfaces.
- High runoff potential in impervious surfaces
 whereas low runoff potential in pervious surfaces.

Resilient and diverse development

3.4 Curve Number

• CN is the combination of Landuse Landcover and Hydrological Soil group.

Land Use/ Land Cover	Hydrologic Soil Group	Curve Number (CN)
Water Bodies	А	100
	D	100
Low Dense Forest	Α	45
	D	83
Open Space	А	40
Fair condition (grass	D	79
cover 50% to 75%)		
Gravel Streets and	Α	69
Roads	D	88
Paved Roads	А	97
	D	97
Paved Areas	А	97
	D	97
Roof Tops	А	97
	D	97

Source: Natural Resources Conservation Service (NRCS)/Agricultural Research Service (ARS)

- The CN indicates the direct runoff or infiltration from rainfall excess.
- A higher CN indicates a higher runoff potential and vise versa.

Resilient and diverse development

3.5 Surface Runoff in Lae City

- Surface Runoff from highest to lowest
- ☐ Rivers
- ☐ Paved Areas
- ☐ Mixture of Paved and Not Paved
- ☐ Grass & Bare land
- ☐ Low Dese Forest

Resilient and diverse development

3.5 Surface Runoff in Lae City

Resilient and diverse development

CONCLUSION AND RECOMMENDATIONS

- ☐ The results shows that higher a city is paved and is becoming more industrialized, the more surface runoff will occur which causes the city to experience more flash floods.
- ☐ Using Geospatial tools ease the assessment of surface runoff and also helps better planning for the city.
- The results assist urban developers and city planners for <u>effective and sustainable urban</u> <u>planning</u> that can <u>reduce surface runoff</u> and water clogged in the city by <u>creating innovative</u> <u>solutions for proper drainage systems</u> and other urban development mitigation strategies.
- * While choosing materials to develop urban areas specific materials must be used for different surfaces like; road networks, roofs and open space.
- ❖ Green roof can be practiced in order to slow the urban surface runoff.

ACKNOWLEDGEMENT

- Sponsor; PNG-Australia Partnership, The University of Papua New Guinea and The Development Policy Centre of Australian National University.
- > Organisor; University of Papua New Guinea's School of Business and Public Policy and the Australian National University's Development Policy Centre.
- Supervisor; : Dr. Tingneyuc Sekac & Dr. Sujoy Jana
- ➤ Post Graduate School and Department of Surveying and Lands Studies PNG Unitech

